If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+12t-50=0
a = 5; b = 12; c = -50;
Δ = b2-4ac
Δ = 122-4·5·(-50)
Δ = 1144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1144}=\sqrt{4*286}=\sqrt{4}*\sqrt{286}=2\sqrt{286}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{286}}{2*5}=\frac{-12-2\sqrt{286}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{286}}{2*5}=\frac{-12+2\sqrt{286}}{10} $
| 5x+4=4x+2x+1 | | p=($6500(0.0414/12))/(1-(1+(0.0414/12)^-12(6))) | | 2/3(x+2)=14/3 | | -2(x+3)^2+4=8 | | x=($6500(0.0414/12))/(1-(1+(0.0414/12)-12(6))) | | 8x+22=19 | | 4m-2=5+3m | | 177=-3(5x+8x) | | 5p(-5)=100 | | 5(2x-3)=3(4x+7 | | 4(m+3)=32+m | | |7x-6|=|10x+18| | | x+8/33=3 | | -77=8p–13 | | (2x+8)+40+x=180 | | 129=3(7n+8) | | 9x-7+2x+14=180 | | 14=5k-81 | | -11+7p=p+7 | | 4x+8x=3x-x-30 | | x+12+3x-14=3x+15 | | 90x=120+60x | | 5(x-7)=24 | | 41–13r+10r=-128 | | 10x^2+2x+34=0 | | 3b+10+82+b+19=180 | | 54=2(x-10)+4(x+2) | | 120+90x=60x | | 5k-4=-7k-16 | | 4x+12=2x-4x-12 | | 30+2u-15+u-20=180 | | 2(3f-10)/2=-1/4 |